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Sub-aging in a domain growth model
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Abstract. We study analytically the aging dynamics of the O(n) model in the limit of n — oo, with
conserved and with non-conserved order parameter. While in the non-conserved dynamics, the autocor-
relation function scales in the usual way C(t,tw) = C(t/tw), in the case of a conserved order parameter,

‘multiscaling’ manifests itself in the form C(t,tw) =

C(h(t)/h(tw)), with a relaxation time growing more

slowly than the age of the system (sub-aging), and h(t) a function growing faster than any length scale of
the problem. In both cases, the effective temperature associated to the violation of the fluctuation theorem
tends to infinity in the asymptotic limit of large waiting times.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics — 75.40.Gb Dynamic properties (dy-
namic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) — 82.20.Mj Nonequilibrium kinetics

1 Introduction

Aging of glassy systems is now well understood, at least
from a qualitative point of view [1], and different ap-
proaches have been used to understand such a behaviour.
One of them is the interpretation of aging in terms of
a coarsening process. The picture is the following: con-
sider for instance an Ising ferromagnet, which is quenched
at time ¢t = 0 below its critical temperature. When ¢ in-
creases, two types of domains emerge, with up and down
spins. In the thermodynamic limit, equilibrium is never
reached. At late times, domains have reached a typical
size L(t). It is thus natural to assume scaling laws for the
different quantities of interest [2]. For instance, one can try
the ansatz S(k,t) ~ Lig(kL) for the structure factor (in
a d-dimensional space), or C(t,t,) ~ F(L(t)/L(ty)) for
the two-time autocorrelation function, where g and F' are
scaling functions. The growth law L(¢) determines then all
the properties of the system. As an example, the droplet
model for spin glasses [3] assumes a logarithmic growth,
leading to C(t,ty) = F(Int/Int,). If the growth law is
given by L(t) ~ t®, like e.g. in a spinodal decomposition,
one gets C(t,ty) = F(t/ty). This last behaviour is called
‘simple aging’ and has been analytically shown to hold
within various non-random models [1,4].

Moreover, the above functional form for the correla-
tion function is also found analytically in some mean-field
models of spin glasses, which give the general form for
the correlation functions in the aging regime C(¢,¢,) =
C(h(t)/h(tw)), with h and C two scaling functions [1] (valid
in the two-time regime where both times are large, but
with 1 < C < 0). Although the notations are different, the
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functional form is the same as in coarsening processes, and
it is then very natural to try to interpret the h-function
as a relevant length scale for spin glasses, as was done for
instance in reference [5].

From the experimental and numerical side, it is found
that a simple aging behaviour describes the data well, in
many different systems. This is interpreted by saying that
the relaxation time ¢, (t,,) of the system scales as its age
tw: tr o t,. However, a more subtle effect may appear,
since t, very often grows more slowly than t,. This ef-
fect has been called sub-aging [6]. In his pioneering ex-
periments on polymer glasses, Struik [7] introduced the
exponent yp from the relation ¢, ~ ¢4 with p < 1. Differ-
ent values of p have been reported: Struik used p ~ 0.9,
experiments in spin glasses indicate that p ~ 0.97 [6], sim-
ulations of a structural glass were fitted using the value
1 ~ 0.88 [8], and recently, experiments on a gel gave p ~
0.9 [9]. It can be checked (this point is discussed in detail in
reference [6]) that the p-exponent is equivalent to the fol-
lowing choice for the h-function: h(t) = exp(ﬁ(%)lf“),
and this equivalence holds in the two-time regime char-
acterised by t, — oo and t — t,, ~ t¥. Another func-
tion, the ‘enhanced power law’ form h(t) = exp(In®(t/tg))
with a > 1, has been phenomenologically introduced in
the context of spin glasses [6], and the value a = 2.2
was used to fit experiments. This in turn gives the re-
lation ¢, ~ tw/lnafl(tw), valid in the regime t,, — oo
and t — ty, ~ t,/In""!(t,). It is interesting to note that
sub-aging is not found in numerical simulations of 3D
spin glass models where the t/t,-scaling seems to be a
robust one [10].

However, the above sub-aging scaling forms are not
motivated by theoretical arguments, since the mean-
field spin glass models discussed above only predict
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the existence of h(t), and its analytical computation re-
mains at present an open problem. In this context, sim-
ple models where h can be computed are much needed,
but there are only very few examples where sub-aging ap-
pears. Recently, a model exhibiting sub-aging has been
proposed by Rinn et al. [11], who studied a slight varia-
tion of Bouchaud’s trap model for aging. This has given
a theoretical support to the use of an exponent pu, even
if its physical origin remains somewhat unclear. A scaling
approach to the diffusion of a point particle in a low di-
mensional space has been proposed in reference [12], and
leads in some cases to a sub-aging behaviour which can be
well described by an enhanced power law.

We consider in the present paper a well-studied
model [4,13,14] for coarsening (the O(n) model in the
large-n limit) and show that it exhibits a sub-aging scal-
ing in the autocorrelation function when the order param-
eter is conserved. Its origin is the simultaneous presence
in the system of two different length scales, whose conse-
quence is the breakdown of the simple scaling laws gen-
erally used in domain growth processes. In particular, no
t/t,-scaling is found, and the relaxation time grows as
ty ~ ty/+/Int, (sub-aging). The autocorrelation is shown
to be well represented in the asymptotic regime by a func-
tion h which is an enhanced power law with a = 3/2, i.e.
h(t) = exp((Inz)3/?), which justify its use in fitting spin
glass experiments. Interestingly enough, h(t) can not be
interpreted in our example as a length scale. We do not
want to argue that the model is a realistic one for the ag-
ing of polymers or spin glasses, but rather to give a possi-
ble physical explanation (the role of length scales [15]) for
the absence of the ‘naive’ t/t,-scaling, and exhibit a sim-
ple example where the h-function can be computed and
discussed in terms of length scales, which has not been
done so far.

2 The O(N) model

This model is one of the few exactly solvable mod-
els for coarsening, as was shown first by Mazenko and
Zannetti [13]. Coniglio and Zannetti [14] computed fur-
ther the scaling properties of the structure factor during
the domain growth process and pointed out the presence
of the two mentioned length scales, and named ‘multiscal-
ing’ the breakdown of the usual S(k,t) ~ Lig(kL). Bray
and Humayun have shown, however, that this multiscal-
ing was a peculiarity of the large-n limit, and proved that
for a large but finite value of n, a ‘normal scaling’ was re-
covered [16]. On an other hand, this ‘pathology’ has been
shown to appear as a relevant preasymptotic effect in dif-
ferent coarsening models [17], like for instance the kinetic
Ising model. We shall make use of previous published re-
sults [13,14] to study the aging properties of the model,
usually studied through the autocorrelation function, that
have not been derived yet for the conserved order param-
eter case. We compute also the response functions in both
cases.
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The model is defined through the Hamiltonian [2]
1 1
[ ade (2 2 Lo 2y2
H[db]f/d X<2(V¢) +,n ¢)), (2.1)

where ¢(x,t) is a m-component vector field in a d-
dimensional space. Two different dynamics may be associ-
ated to this model, depending on whether or not the order
parameter is conserved. In the case of a non-conserved or-
der parameter, the dynamics is given by the so-called time
dependent Ginzburg-Landau equation

0p(x,t) 0H
ot p(x,t)

(2.2)

For conserved fields, we add —V? in front of the r.h.s to
get the Cahn-Hilliard equation

The limit n — oo allows to solve the dynamics in both
cases, because the replacement ¢?/n — (¢?), where ¢ is
one of the components of ¢, becomes correct [13]. The
problem may be studied at 7' = 0 (there is no noise terms
in the dynamical equations), since in coarsening problems,
temperature does not play an essential role, provided it
is below the critical temperature. (The review paper [2]
provides a longer discussion of that point.)

For the non-conserved dynamics, one has for the struc-
ture factor [2,13]

(2.3)

Sk, t) = $<¢>(k, 1)d(—k, 1)) = (8mt) ¥ 26",

and for the autocorrelation function

(2.4)

2/ ] d/2

Clttn) = 3 [ axtotx ot ) = |2

(2.5)

Defining the length scale L(t) = t'/? and the scaling vari-
ables © = kL(t), Ay = t/t,, it is possible to write
S(kv t) = Ldg(l'), g(:L') = (Sw)d/z exp(72x2),

2\/5]‘“2_

14z

(2.6)

C(t,tw) =F1(/\1), Fl(l‘) = [

These expressions give a specific example for the scaling
scenario of the introduction. In particular, the autocor-
relation function exhibits a simple aging behaviour. By
using a power law h(t) = t* [for instance h(t) = L(t)],
the last equation can be recast in the general C(t,t,,) =
C(h(t)/h(tw)) scaling form.

3 Conserved order parameter: sub-aging

The Cahn-Hilliard equation (2.3) associated to the
Hamiltonian (2.1) may be solved in the large-n limit
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to give [2,13,14]

S(k, t) ~ [Ly (1)) =

(3.1)
where f(z) = 22% — 2. In this expression, two char-
acteristic length scales have been defined: L;(t) = /4,
and Lo(t) = (%)1/4; to is an uninteresting con-

stant. In the standard scaling form, S(k,t) ~ Lég(kL),
the structure factor varies as L¢ with a prefactor depend-
ing on the scaling variable kL, whereas for the multiscaling
form (3.1), S varies as L{, with an exponent v which de-
pends continuously on the scaling variable kLs. The two
scalings are thus completely different.

Coniglio and Zannetti [14] have interpreted this mul-
tiscaling in terms of domains composed of sub-domains,
each sub-domain growing at a different rate. The initial
motivation for the present work was indeed to investigate
the possible existence of a ‘hierarchy’ of time scales, sim-
ilar to the one found in mean-field spin glass models (‘ul-
trametricity in time’) [1,11,18,19]. A different effect arises
instead, since one gets for the autocorrelation function

1
C(t,tw) ~ ()1
p (\/t (/%) + \/tw 1n(tw/t0))2
X exp g 7 T tw

(3.2)

It is obvious from this expression that C(t,t,,) cannot be
written as a function of ¢/¢,, only. The physical key ingre-
dient for the absence of the usual scaling is the presence
of two different length scales in the system.

We prove now analytically that equation (3.2) implies
sub-aging. It has to be remarked first that when the time
difference 7 =t — t,, is equal to t,,, one has

1

Cltw + tw, tw) e 7#3‘2“5“/24

—0. (3.3)

In the asymptotic limit of large waiting times, the relax-
ation of C(t,t,) is complete in times 7 < t,. In that
regime, one can show that

dlnt, [ T 2
C(t,tw) o exp ( o1 <£> ) )

Defining the scaling variable Mo =
equation (3.2) can finally be rewritten

(3.4)

TVInty [tw,

1.2
Ot ) ~ Fo(h); F2<x>—exp(d6—4). (3.5)

The relaxation time grows hence as t, ~ t,,/v/Int,, i.e.
more slowly than t,: this is a sub-aging behaviour. It
is moreover possible to compute the function h(t) dis-
cussed in the introduction. The scaling form C(t,t,) =
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C (h(t)/h(ty)) should be valid in the two-time regime
where both times are large, but with a non-zero value of
the correlation function. In the present case, this regime
is characterized by t,, — 00, T ~ t/+/Int,,. We have seen
that a natural choice for h(t) would be Lq(t) or La(t), i.e.
a length scale, since it is a common interpretation. This
does not work, and a more complicated form has to be
found. It is simple algebra to prove that h(t) is in fact an
enhanced power law:

C(x) =exp (—2;;8 1n2(x)) i h(t) =exp ((lnt)?’/Q) .
(3.6)

The function A is neither L nor Lo, but a combination
of the two, and therefore does not have a direct physical

interpretation: h(t) ~ exp ((Ll/LQ)G) .

4 Response functions: infinite effective
temperatures

It is also relevant to study the response functions for ag-
ing systems, since it is a major prediction of the dynamical
mean-field theory for spin glasses that interesting informa-
tions are encoded in the susceptibilities [1,20]. In glassy
systems, aging is also found in the related response func-
tions R(t,t,), associated with a breakdown of the fluc-
tuation dissipation theorem which at equilibrium would
be TR(t,ty) = O, C(t,tw). This is taken into account by
introducing an effective temperature Teg through [20]

BCd(tA,tw)
— T Otw
Teff(q) - tiinoo R(t,tw) (41)

C(t,tw)=q

In coarsening systems, however, response functions have
been shown numerically and analytically to be weak, in
the sense that Teg — oo at large times [21,22]. This prop-
erty has been related to the decreasing density of topolog-
ical defects (domain walls) during the coarsening. In the
case of the O(n) model, no topological defects are present
if n > d, which is naturally the case in the large-n limit.
We compute then R(t,t,,) in the both cases studied above
to obtain Teg. We refer the reader to reference [22] for the
method, since we follow exactly the same steps. We get
the two following expressions:

AN 1 d/2
R(t,ty,) ~ | — 4.2
o (' ()"
in the non-conserved case, and
R(t,t 1
(tto) ~ Ty
2
o (Vili - Vi, i)
xexp | = ,  (4.3)
8 t—ty



692

in the conserved case (we dropped out all numerical con-
stants). Combining equations (2.5, 3.2, 4.2, 4.3), it is easy
to show that for the non-conserved and the conserved case
successively, one has:

Tus(q) ~ lim_ (/21
t,(,,fl_Q)/‘l

Te(q) ~ i '
H(Q) twlinoo (ln tw)(d+2)/8 exp(\/M)

(4.4)

This holds for 0 < ¢ < 1, and shows that for d > 2,
although there is no interpretation here in terms of defects,
the effective temperature is infinite, as has been found so
far in all domain growth processes [4,21,22].

5 Conclusion

We studied in this paper the aging dynamics of the O(n)
model in the large-n limit. We recalled first the case of
a non conserved order parameter where standard scaling
laws hold, leading to a simple ¢/t,-aging behaviour [1,2].
We investigated the more interesting case of a conserved
dynamics, and were able to show that the multiscaling ob-
served in the structure factor does not imply a hierarchy
of time scales (‘ultrametricity in time’ [18]). Rather, the
relaxation takes place in a time scale which is shorter than
the waiting time, t,. ~ t,,/In""(t,,) with a = 3/2, the cor-
relation function being well represented in that regime by
C(t,ty) = C(h(t)/h(ty)), where h is an enhanced power
law h(t) = exp(In®(t)). This simple example exhibits then
an interesting sub-aging behaviour, whose origin is the
presence of two different length scales during the coars-
ening process. It shows also that the interpretation of
h(t) as a length scale may in some cases be misleading.
The enhanced exponential form that has been success-
fully used to fit spin glass experiments arises naturally
from our computation. It implies that the relaxation time
scales as t, ~ t,/In""'(t,). Experimentally, this scaling
form should be hardly distinguishable from a power law
t, ~ th if p is very near to one, as it seems to be in spin
glasses [6].

I sincerely thank J. Kurchan who suggested and followed this
work, J.-L. Barrat and J.-P. Bouchaud for their interest and
encouragements, L.F. Cugliandolo and M. Sellitto for their help
during the preparation of the manuscript.
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